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Abstract

We apply a quasi-model-independent strategy (\Sleuth") to search for new high pT physics in � 100
pb�1 of p�p collisions at

p
s = 1:8 TeV collected by the D� experiment during 1992{1996 at the

Fermilab Tevatron. We systematically analyze many exclusive �nal states and demonstrate sensitivity
to a variety of models predicting new phenomena at the electroweak scale. No evidence of new high
pT physics is observed.
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It is generally recognized that the standard model, an
extremely successful description of the fundamental par-
ticles and their interactions, must be incomplete. Un-
fortunately, the possibilities beyond the current para-
digm are su�ciently broad that the �rst hint could ap-
pear in any of many di�erent guises. This suggests the
importance of performing searches that are as model-
independent as possible. In this Letter we describe a
search for new physics beyond the standard model, as-
suming nothing about the expected characteristics of the
new processes other than that they will produce an ex-
cess of events at high transverse momentum (pT ). An
explicit prescription (\Sleuth") [1,2] is applied to many
exclusive �nal states [1{3] in a data sample correspond-
ing to approximately 100 pb�1 of p�p collisions collected
by the D� detector [4] during 1992{1996 (Run I) at the
Fermilab Tevatron.
The data are partitioned into exclusive �nal states us-

ing standard criteria that identify isolated and energetic
electrons (e), muons (�), and photons (), as well as jets
(j), missing transverse energy ( =ET ), and the presence of
W and Z bosons [1]. For each exclusive �nal state, we
consider a small set of variables given in Table I. The
notation

P
0

pjT is shorthand for pj1T if the �nal state con-

tains only one jet, and
Pn

i=2 p
ji
T if the �nal state contains

n � 2 jets, unless the �nal state contains only n � 3 jets
and no other objects, in which case

Pn
i=3 p

ji
T is used. Lep-

tons and =ET from reconstructed W or Z bosons are not
considered separately in the left-hand column. Because
the muon momentum resolution in Run I was modest,
we de�ne

P
p`T =

P
peT for events with one or more elec-

trons and one or more muons, and we determine =ET from
the transverse energy summed in the calorimeter, which
includes the pT of electrons, but only a negligible fraction
of the pT of muons. When there are exactly two objects
in an event (e.g., one Z boson and one jet), their pT val-
ues are expected to be nearly equal, and we therefore use
the average pT of the two objects. When there is only
one object in an event (e.g., a singleW boson), we use no
variables, and simply count the number of such events.

If the �nal state includes then consider the variable

=ET =ET

one or more charged leptons
P

p`T
one or more electroweak bosons

P
p
=W=Z
T

one or more jets
P

0 pjT

TABLE I. A quasi-model-independently motivated list of
interesting variables for any �nal state. The set of variables to
consider for any exclusive channel is the union of the variables
in the second column for each row that pertains to that �nal
state.

The Sleuth algorithm requires as input a data sam-
ple, a set of events modeling each background process i,

and the number of background events b̂i � �b̂i from each
background process expected in the data sample. From
these we determine the region R of greatest excess and

quantify the degree P to which that excess is interest-
ing. The algorithm itself, applied to each individual �nal
state, consists of seven steps:
(1) We construct a mapping from the d-dimensional vari-
able space de�ned by Table I into the d-dimensional unit
box (i.e., [0; 1]d) that attens the total background dis-
tribution. We use this to map the data into the unit
box.
(2) We de�ne a \region" R about a set of N data points
to be the volume within the unit box closer to one of
the data points in the set than to any of the other data
points in the sample. The arrangement of data points
themselves thus determines the regions. A region con-
taining N data points is called an N -region.
(3) Each region contains an expected number of back-

ground events b̂R, numerically equal to the volume of the
region � the total number of background events expect-

ed, and an associated systematic error �b̂R, which varies
within the unit box according to the systematic errors as-
signed to each contribution to the background estimate.
We can therefore compute the probability pRN that the
background in the region uctuates up to or beyond the
observed number of events. This probability is the �rst
measure of the degree of interest of a particular region.
(4) The rigorous de�nition of regions reduces the number
of candidate regions from in�nity to � 2Ndata . Impos-
ing explicit criteria on the regions that the algorithm is
allowed to consider further reduces the number of can-
didate regions. We apply geometric criteria that favor
high values in at least one dimension of the unit box,
and we limit the number of events in a region to �fty.
The number of remaining candidate regions is still suf-
�ciently large that an exhaustive search is impractical,
and a heuristic is employed to search for regions of ex-
cess. In the course of this search, the N -region RN for
which pRN is minimum is determined for each N , and
pN = minR (pRN ) is noted.
(5) In any reasonably-sized data set, there will always be
regions in which the probability for bR to uctuate up
to or above the observed number of events is small. We
determine the fraction PN of hypothetical similar experi-

ments (hse's) in which pN found for the hse is smaller than
pN observed in the data by generating random events
drawn from the background distribution and computing
pN by following steps (1){(4).
(6) We de�ne P and Nmin by P = PNmin

= minN (PN ),
and identify R = RNmin

as the most interesting region in
this �nal state.
(7) We use a second ensemble of hse's to determine the
fraction P of hse's in which P found in the hse is smaller
than P observed in the data. The most important out-
put of the algorithm is this single number P, which may
loosely be said to be the \fraction of hypothetical similar
experiments in which you would see an excess as inter-
esting as what you actually saw in the data." P takes on
values between zero and unity, with values close to zero
indicating a possible hint of new physics. The computa-
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tion of P rigorously takes into account the many regions
that have been considered within this �nal state.
The smallest P found in the many di�erent �nal states

considered (Pmin) determines ~P , the \fraction of hy-

pothetical similar experimental runs (hser's) that would
have produced an excess as interesting as actually ob-
served in the data," where an hser consists of one hse

for each �nal state considered. ~P is calculated by simu-
lating an ensemble of hypothetical similar experimental
runs, and noting the fraction of these hser's in which the
smallest P found is smaller than the smallest P observed
in the data. Like P , ~P takes on values between zero and
unity, and the potential presence of new high pT physics
would be indicated by �nding ~P to be small. The di�er-
ence between ~P and P is that in computing ~P we account
for the many �nal states that have been considered. The
correspondence between Pmin and ~P for the �nal states
considered here is shown in Fig. 1(a).
D� has previously analyzed several �nal states ( 2j,

ee, e =ET , W, W , Z, Zj, and Wj) [5] in a manner simi-
lar to the strategy used here, but without the bene�t of
Sleuth. No evidence of physics beyond the standard mod-
el was observed. The �nal states we describe in this Let-
ter divide naturally into four sets: those containing one
electron and one muon (e�X); those containing a single
lepton, missing transverse energy, and two or more jets
(W+jets-like); those containing two same-avor leptons
and two or more jets (Z+jets-like); and those in which
the sum of the number of electrons, muons, and photons
is � 3 [3(e=�=)X ].
The e�X data correspond to 108�6 pb�1 of integrat-

ed luminosity. The data and basic selection criteria are
identical to those used in the published t�t cross section
analysis for the dilepton channels [6], which include the
selection of events containing one or more isolated elec-
trons with peT > 15 GeV, and one or more isolated muons
with p�T > 15 GeV. In this Letter all electrons (and pho-
tons) have j�det j< 1:1 or 1:5 <j�det j< 2:5, and muons
have j �det j< 1:7, unless otherwise indicated [7]. The
dominant backgrounds to the e�X �nal states are from
Z=� ! �� ! e�����, and processes that generate a
true muon and a jet that is misidenti�ed as an electron.
Smaller backgrounds include WW and t�t production.
TheW+jets-like �nal states include events in both the

electron and muon channels. The e =ET 2j(nj) events [8],
corresponding to 115� 6 pb�1 of collider data, have one
electron with peT > 20 GeV, =ET > 30 GeV, and two or

more jets with pjT > 20 GeV and j�detj< 2:5. The elec-
tron and missing transverse energy are combined into a
W boson if 30 < Me�

T < 110 GeV. The � =ET 2j(nj) da-
ta [9] correspond to 94�5 pb�1 of integrated luminosity.
Events in the �nal sample must contain one muon with
p�T > 25 GeV and j�det j< 0:95, two or more jets with

pjT > 15 GeV and j�detj< 2:0 and with the most energet-
ic jet within j�detj< 1:5, and =ET > 30 GeV. Because an
energetic muon's momentum is not well measured in the
detector, we are unable to separate \W -like" events from

\non-W -like" events using the transverse mass, as done
above in the electron channel. The muon and missing
transverse energy are therefore always combined into a
W boson. The W (! � =ET ) 2j(nj) �nal states are com-
bined with the W (! e =ET ) 2j(nj) �nal states described
above to form the W 2j(nj) �nal states. The dominant
background to both the e =ET 2j(nj) and � =ET 2j(nj) �nal
states is from W + jets production. A few events from
t�t production and semileptonic decay are expected in the
�nal states W 3j and W 4j.
The Z+jets-like �nal states also include events in both

the electron and muon channels. The ee 2j(nj) data [10]
correspond to an integrated luminosity of 123� 7 pb�1.
O�ine event selection requires two electrons with trans-
verse momenta peT > 20 GeV and two or more jets with

pjT > 20 GeV and j �det j< 2:5. We use a likelihood
method to help identify events with signi�cant missing
transverse energy [3]. An electron pair is combined in-
to a Z boson if 82 < Mee < 100 GeV, unless the event
contains signi�cant =ET or a third charged lepton. The
�� 2j(nj) data [11] correspond to 94�5 pb�1 of integrat-
ed luminosity. Events in the �nal sample contain two or
more muons with p�T > 20 GeV and at least one muon

with j�detj< 1:0, and two or more jets with pjT > 20 GeV
and j�det j< 2:5. A �� pair is combined into a Z boson
if the muon momenta can be varied within their resolu-
tions such that m�� � MZ and =ET � 0. The dominant
background to both the ee 2j(nj) and �� 2j(nj) data is
from Drell-Yan production, with Z=� ! (ee=��).
Events in the 3(e=�=)X �nal states are analyzed us-

ing 123 � 7 pb�1 of integrated luminosity. All objects
(electrons, photons, muons, and jets) are required to be
isolated, to have pT � 15 GeV, and to be within the
�ducial volume of the detector. Jets are required to have
j�j< 2:5. =ET is identi�ed if its magnitude is larger than
15 GeV. The dominant backgrounds to many of these
�nal states include Z and WZ production.
Refs. [1,3] provide examples of Sleuth's performance

on representative signatures. When ignorance of both
WW and t�t is feigned in the e�X �nal states, we �nd
Pe� =ET

= 2:4� and Pe� =ET 2j = 2:3� in D� data, correctly
indicating the presence of WW and t�t. When ignorance
of t�t only is feigned, we �nd Pe� =ET 2j = 1:9�. Excess-
es are observed with only 3.9 WW events expected in
e� =ET (with a background of 45.6 events), and only 1.8 t�t
events in e� =ET 2j (with a background of 3.4 events), even
though Sleuth \knows" nothing about either WW or t�t.
We are able to consistently �nd indications of the pres-
ence of WW and t�t in an ensemble of mock experiments
at a similar level of sensitivity.
In theW+jets-like �nal states we again feign ignorance

of t�t in the background estimate, and �nd Pmin > 3� in
30% of an ensemble of mock experimental runs on the
�nal states W 3j, W 4j, W 5j, and W 6j. In the Z+jets-
like �nal states we consider a hypothetical signal: a �rst
generation scalar leptoquark with a mass of 170 GeV and
a branching ratio into charged leptons of � = 1. In the

5



ee 2j �nal state 5:9�0:8 such leptoquark events would be
expected with a background of 32�4 events. Sleuth �nds
Pee 2j > 3:5� in 80% of the mock experiments performed.
Finally, in the �nal states 3(e=�=)X we �nd that a care-
ful and systematic de�nition of �nal states can result in
discovery sensitivity with only a few events, independent
of their kinematics. We conclude from these studies that
Sleuth is sensitive to a variety of new physics signatures.
Figure 2 shows the results of the Sleuth analysis of

two typical �nal states (W 2j and Z 2j). The variable
space de�ned by Table I is two-dimensional; parentheses
are used in the axis labels to indicate the transformed
variables of the unit box. The circles are individual da-
ta events, and �lled circles de�ne the region selected by
Sleuth. The regions chosen are seen to correspond to high
pT in at least one dimension, as required by the imposed
criteria. Visually, these regions do not appear to con-
tain an unusual excess, and large Ps are found. Similar
results are obtained for other �nal states.
Table II summarizes the values of P obtained for all

populated �nal states analyzed in this article. Taking in-
to account the many �nal states (both populated and un-

populated) that are considered, we �nd ~P=0:89, implying
that 89% of an ensemble of hypothetical similar experi-
mental runs would have produced a �nal state with a can-
didate signal more interesting than the most interesting
observed in these data. Figure 1(b) shows a histogram of
the P values, in units of standard deviations, computed
for the populated �nal states analyzed in this article, to-
gether with the distribution expected from a simulation
of many mock experimental runs. Good agreement is ob-
served. We �nd no evidence of new high pT physics in
these data.

℘∼ (σ
)

℘ min (σ) ℘ (σ)

FIG. 1. (a) The correspondence between ~P and Pmin, each
expressed in units of standard deviations. The curve reects
the number of �nal states, both populated and unpopulated,
considered in this Letter. (b) Histogram of the P values com-
puted for the populated �nal states considered in this article,
in units of standard deviations. The distribution agrees well
with expectation.
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Final State Bkg Data P

e�X
e� =ET 48.5�7.6 39 0:14 (+1:08�)
e� =ET j 13.2�1.5 13 0:45 (+0:13�)
e� =ET 2j 5.2�0.8 5 0:31 (+0:50�)
e� =ET 3j 1.3�0.3 1 0:71 (�0:55�)

W+jets-like
W 2j 400� 53 441 0:29 (+0:55�)
W 3j 77 � 10 67 0:23 (+0:74�)
W 4j 14:3� 2:3 15 0:53 (�0:08�)
W 5j 1:8 � 0:4 1 0:81 (�0:88�)
W 6j 0:25 � 0:07 1 0:22 (+0:77�)
e =ET 2j 11:6� 1:7 7 0:76 (�0:71�)
e =ET 3j 2:5 � 0:6 5 0:17 (+0:95�)
e =ET 4j 0:80 � 0:24 2 0:13 (+1:13�)

Z+jets-like
Z 2j 98 � 19 85 0:52 (�0:05�)
Z 3j 13:2� 2:7 12 0:71 (�0:55�)
Z 4j 1:9 � 0:5 1 0:83 (�0:95�)
ee 2j 32� 4 32 0:72 (�0:58�)
ee 3j 4:5 � 0:6 4 0:61 (�0:28�)
ee 4j 0:64 � 0:20 3 0:04 (+1:75�)
ee =ET 2j 3:7 � 0:8 2 0:68 (�0:47�)
ee =ET 3j 0:45 � 0:13 1 0:36 (+0:36�)
ee =ET 4j 0:061 � 0:028 1 0:06 (+1:55�)
�� 2j 0:50 � 0:15 2 0:08 (+1:41�)

3(e=�=)X
eee 2:6 � 1:0 1 0:89 (�1:23�)
Z 4:3 � 0:7 3 0:84 (�0:99�)
Zj 1:03 � 0:31 1 0:63 (�0:33�)
ee 2:2 � 0:4 1 0:88 (�1:17�)
ee =ET 0:26 � 0:10 1 0:23 (+0:74�)
e 10:7� 2:1 6 0:66 (�0:41�)
ej 2:3 � 0:7 4 0:21 (+0:81�)
e 2j 0:37 � 0:15 1 0:30 (+0:52�)
W 0:21 � 0:08 1 0:18 (+0:92�)
 2:5 � 0:5 2 0:41 (+0:23�)

~P 0:89 (�1:23�)
TABLE II. Summary of results. The most interesting �-

nal state is found to be ee 4j, with P = 0:04. Upon taking
into account the many �nal states we have considered in this
analysis, we �nd ~P = 0:89.
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FIG. 2. Examples of Sleuth's analysis of the �nal states (a)
W 2j and (b) Z 2j.
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